A Novel Technique for Grading of Dates using Shape and Texture Features

نویسندگان

  • S. H. Mohana
  • C. J. Prabhakar
چکیده

This paper presents a novel method to grade the date fruits based on the combination of shape and texture features. The method begins with reducing the specular reflection and small noise using a bilateral filter. Threshold based segmentation is performed for background removal and fruit part selection from the given image. Shape features is extracted using the contour of the date fruit and texture features are extracted using Curvelet transform and Local Binary Pattern (LBP) from the selected date fruit region. Finally, combinations of shape and texture features are fused to grade the dates into six grades. k-Nearest Neighbour(k-NN) classifier yields the best grading rate compared to other two classifiers such as Support Vector Machine (SVM) and Linear Discriminant(LDA) classifiers. The experiment result shows that our technique achieves highest accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Date fruits classification using texture descriptors and shape-size features

In this paper, we proposed a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of ...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Performance Comparison of Fourier Transform and its Derivatives as Shape Descriptors for Mango Grading

Mango is a tropical fruit of India which plays a major role in earning foreign currency by export. The export sector of India is paying attention towards it because of its commercial significance. Image has assorted inbuilt features which reflect its content such as color, texture, shape, and spatial relationship features, etc. How to organize and utilize these features effectively in agricultu...

متن کامل

A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP

In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1501.01090  شماره 

صفحات  -

تاریخ انتشار 2014